Development of novel multifunctional adsorbent by effectively hosting both zwitterionic surfactant and hydrated ferric oxides in montmorillonite.

2021 
Abstract Intercalating various functional species into the interlayer space is an effective strategy to multi-functionalize 2D materials (e.g., montmorillonite, Mnt), but general limitations have emerged therefrom: (1) various intercalated species compete for the limited interlayer space, and (2) the neighboring intercalated species probably inhibit each other’s reactivity. Herein, we have synthesized a novel Mnt-based multifunctional adsorbent (HFO-AZ16Mnt) via intercalation of zwitterionic surfactant (Z16), acid activation by chloric acid, and introduction of hydrated ferric oxides (HFOs). The acid activation can lead to formation of porous nanosilica, which serves as the new active sites for supporting HFO nanoparticles. Employing tetrachloroferrate (FeCl4-) as an anionic precursor of HFOs can help preserve the sulfonyl group (–SO3-) of Z16 from being electrostatically occupied during the HFO introduction. As a result, HFO-AZ16Mnt can separately and effectively host Z16 and HFOs. The unique structure endows HFO-AZ16Mnt with the efficiency on simultaneous removal of hydrophobic organic contaminants, oxyanions, and heavy metal cations (nitrobenzene, phosphate, and Cd(II), respectively in this study) from water. Particularly, HFO-AZ16Mnt exhibits impressive capacity towards Cd(II) in both single- (26.1 mg/g) and multi-contaminant system (30.6 mg/g). This work has demonstrated a new strategy to multi-functionalize Mnt, and provided a promising novel Mnt-based multifunctional adsorbent for simultaneous and effective removal of organic and inorganic contaminants from water.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    1
    Citations
    NaN
    KQI
    []