Conducting and stretchable nanometer-thin gold/thiol-functionalized polydimethylsiloxane films

2018 
Future low-voltage dielectric elastomer transducers (DETs), based on nanometer-thin elastomer membranes, will rely on soft and compliant electrodes with reasonable electrical conductivity and sound adhesion to the elastomer. State-of-the-art adhesion promoters, including nanometer-thin Cr/Ti films, result in defects for applied areal strains larger than 3% and lead to increases in the stiffness of DETs. To generate forces in the Newton range, these low-voltage DETs have to be stacked in thousands of layers. Herein, we present a compliant electrode, which consists of gold bonded covalently to thiol-functionalized polydimethylsiloxane (SH-PDMS) films. The membranes were fabricated using molecular beam deposition and in situ and/or subsequent ultraviolet light (UV) radiation. Peel-off tests demonstrate the expected strong binding of Au to the SH-PDMS network, with this highly stretchable Au/SH-PDMS layer capable of withstanding strains of at least 60%, without losing conductivity. Optical micrographs show signs of cracks for strained pure Au and Au/Cr electrodes but not for the Au/SH-PDMS layer. The mechanical properties and adhesion forces of Au/SH-PDMS were extracted by means of atomic force microscopy (AFM), using a spherical Au tip coated with methyl groups (CH3). The elastic modulus of   (  12  ±  9  )    MPa increased slightly against the 20-nm-thin Au/PDMS example, but it can be tailored by the cross-linking density of Au/SH-PDMS via the UV irradiation dose. Unloading nanoindentation curves revealed pull-off forces between the CH3-functionalized AFM tip and the Au/SH-PDMS layer at the time of separation. For Au/SH-PDMS, the spectral distribution of pull-off forces exhibits repulsive forces with the CH3 groups of the PDMS network as well as adhesive forces resulting from interactions with the nanometer-sized Au clusters. This approach provides the means to bind gold clusters homogenously within the SH-PDMS film. Such compliant electrodes are the prerequisite for fabricating low-voltage DETs that can be stretched by more than 50%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []