Biomarker Discovery and Identification in Laser Microdissected Head and Neck Squamous Cell Carcinoma with ProteinChip® Technology, Two-dimensional Gel Electrophoresis, Tandem Mass Spectrometry, and Immunohistochemistry

2003 
Head and neck cancer is a frequent malignancy with a complex, and up to now not clear etiology. Therefore, despite of improvements in diagnosis and therapy, the survival rate with head and neck squamous-cell carcinomas is poor. For a better understanding of the molecular mechanisms behind the process of tumorigenesis and tumor progression, we have analyzed changes of protein expression between microdissected normal pharyngeal epithelium and tumor tissue by ProteinChip® technology. For this, cryostat sections from head and neck tumors (n 57) and adjacent mucosa (n 44) were laser-microdissected and analyzed on ProteinChip arrays. The derived mass spectrometry profiles exhibited numerous statistical differences. One peak significantly higher expressed in the tumor (p 0.000029) was isolated by twodimensional gel electrophoresis and identified as annexin V by in-gel proteolytic digestion, peptide mapping, tandem mass spectrometry analysis, and immuno-deplete assay. The relevance of this single marker protein was further evaluated by immunohistochemistry. Annexinpositive tissue areas were re-analyzed on ProteinChip arrays to confirm the identity of this protein. In this study, we could show that biomarker in head and neck cancer can be found, identified, and assessed by combination of ProteinChip technology, two-dimensional gel electrophoresis, and immunohistochemistry. In our experience, however, such studies only make sense if a relatively pure microdissected tumor tissue is used. Only then minute changes in protein expression between normal pharyngeal epithelium and tumor tissue can be detected, and it will become possible to educe a tumor-associated protein pattern that might be used as a marker for tumorigenesis and progression. Molecular & Cellular Proteomics 2: 443– 452, 2003.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    94
    Citations
    NaN
    KQI
    []