A Synergistic Behavior Underpins Human Hand Grasping Force Control During Environmental Constraint Exploitation

2018 
Despite the complex nature of human hands, neuroscientific studies suggested a simplified kinematic control underpinning motion generation, resulting in principal joint angle co-variation patterns, usually called postural hand synergies. Such a low dimensional description was observed in common grasping tasks, and was proven to be preserved also for grasps performed by exploiting the external environment (e.g., picking up a key by sliding it on a table). In this paper, we extend this analysis to the force domain. To do so, we performed experiments with six subjects, who were asked to grasp objects from a flat surface while force/torque measures were acquired at fingertip level through wearable sensors. The set of objects was chosen so that participants were forced to interact with the table to achieve a successful grasp. Principal component analysis was applied to force measurements to investigate the existence of co-variation schemes, i.e. a synergistic behavior. Results show that one principal component explains most of the hand force distribution. Applications to clinical assessment and robotic sensing are finally discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []