Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian Free Field

2016 
We study the extremal process associated with the Discrete Gaussian Free Field (DGFF) in scaled-up (square-)lattice versions of bounded open planar domains subject to mild regularity conditions on the boundary. We prove that, in the scaling limit, this process tends to a Cox process decorated by independent, correlated clusters whose distribution is completely characterized. As an application, we control the scaling limit of the discrete supercritical Liouville measure, extract a Poisson-Dirichlet statistics for the limit of the Gibbs measure associated with the DGFF and establish the "freezing phenomenon" conjectured to occur in the "glassy" phase. In addition, we prove a local limit theorem for the position and value of the absolute maximum. The proofs are based on a concentric, finite-range decomposition of the DGFF and entropic-repulsion arguments for an associated random walk. Although we naturally build on our earlier work on this problem, the methods developed here are largely independent.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    4
    Citations
    NaN
    KQI
    []