Cognitive stimulation during lifetime and in the aged phase improved spatial memory, and altered neuroplasticity and cholinergic markers of mice.

2013 
Abstract In the central nervous system, the degree of decline in memory retrieval along the aging process depends on the quantity and quality of the stimuli received during lifetime. The cholinergic system modulates long-term potentiation and, therefore, memory processing. This study evaluated the spatial memory, the synaptic plasticity and the density of cholinergic markers in the hippocampi of mice submitted to cognitive stimulation during lifetime or during their aged phase. Male C 57 Bl/6 mice (2 months old) were exposed to enriched environment during 15 months (EE-15). An age-matched group was left in standard cages during the same period (SC-15). Spatial memory was evaluated using the Barnes maze at 2, 5, 11 and 17 months of age. At the 17-month-old time point, EE-15 mice showed better performance in the spatial memory task (P  125 I]-α-bungarotoxin. The other half of the brains was used for Western blotting analysis of choline acetyltransferase (ChAT) density. There was no difference in synaptophysin or MAP-2 densities, but BDNF was increased in some hippocampal areas of EE-15 and EE-2, in comparison to control groups. In the same way, increases in ChAT and α7 densities, but not in α4β2, were observed. Both cognitive stimuli during lifetime or during the aged phase improved spatial memory of mice. No difference in structural plasticity was observed, but the maintenance of memory can be due to improvement in long-term potentiation functionality in the hippocampus, modulated, at least, by BDNF and the cholinergic system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    25
    Citations
    NaN
    KQI
    []