Dirac composite fermion theory of general Jain sequences

2021 
We reconsider the composite fermion theory of general Jain sequences with filling factor $\ensuremath{\nu}=N/(4N\ifmmode\pm\else\textpm\fi{}1)$. We show that Goldman and Fradkin's proposal of a Dirac composite fermion leads to a violation of the Haldane bound on the coefficient of the static structure factor. To resolve this apparent contradiction, we add to the effective theory a gapped chiral mode (or modes) that already exists in the Fermi liquid state at $\ensuremath{\nu}=1/4$. We interpret the additional mode as an internal degree of freedom of the composite fermion, related to area-preserving deformations of the elementary droplet built up from electrons and correlation holes. In addition to providing a suitable static structure factor, our model also gives the expected Wen-Zee shift and a Hall conductivity that manifests Galilean invariance. We show that the charge density in the model satisfies the long-wavelength version of the Girvin-MacDonald-Platzman algebra.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    2
    Citations
    NaN
    KQI
    []