Hydrogen Bond-Based Macrocyclic and Tripodal Neutral Ionophores for Highly Selective Polymeric Membrane Sulfate-Selective Electrodes.

2021 
Four hydrogen bond-based macrocyclic and tripodal neutral receptors with increasing conformational complementarity with sulfate were used for the first time as ionophores to develop polymeric membrane sulfate-selective electrodes. Optimizing the membrane composition such as ionophores, lipophilic additives, and plasticizers yielded ISEs which showed Nernstian response to sulfate with the best selectivity so far and improved detection limits (a slope of -29.8 mV/dec in the linear range of 1 × 10-6-1 × 10-1 M with a detection limit of 5 × 10-7 M), which led to the success of the determination of sulfate in drinking water samples and neomycine tablets. The anion-ionophore complex constants in the membrane phase were determined and correlated with the selectivity sequence of the ISEs. Studies on the influence of pH of the sample solution demonstrated that the developed ISEs can be operated in a wide pH range of 3-8 with fast response and rapid (in 1 min) and long lifetime. The success of these ionophores represents a feasible strategy for overcoming the "Hofmeister series" by employing a combination of complementarity and hydrogen bonds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []