The impact of heat on human physical work capacity; Part III: the impact of solar radiation varies with air temperature, humidity, and clothing coverage.

2021 
It is well-known that heat impacts human labour/physical work capacity (PWC), but systematic evaluations of solar radiation (SOLAR) effects and the interaction with air temperature and humidity levels and clothing are lacking, as most lab-studies are conducted in semi-nude subjects without radiation or only in a single climatic condition. Due to the high relevance of SOLAR in various occupations, this study quantified how SOLAR interacts with clothing and other primary environmental factors (air temperature/humidity) of importance to determine PWC in the heat. The data allowed the development of a SOLAR correction factor for predicting PWC in major outdoor industries. Fourteen young adult males (7 wearing a standardised work coverall (0.9 Clo), 7 with shorts and trainers (0.3 Clo) walked for 1-hour at a fixed heart rate of 130 b{middle dot}min-1, in seven combinations of air temperature (25 to 45{degrees}C) and relative humidity (20 or 80%), with and without SOLAR (800 W/m2 from solar lamps). Cumulative energy expenditure in the heat, relative to the work achieved in a cool reference condition, was used to determine PWC%. Skin temperature was the primary determinant of PWC in the heat. In dry climates with exposed skin (0.3 Clo), SOLAR caused PWC to decrease exponentially with rising air temperature, whereas work coveralls (0.9 Clo) negated this effect. In humid conditions, the SOLAR-induced reduction in PWC was consistent and linear across all levels of air temperature, and clothing conditions. WBGT and UTCI based prediction equations of PWC represented SOLAR correctly. For heat indices not intrinsically accounting for SOLAR, correction factors are provided enabling forecasting of heat effects on work productivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []