Carbon nanotube protected composite laminate subjected to lightning strike: Interlaminar film distribution investigation

2020 
Abstract A kind of interlaminar film with carbon nanotubes inserted into polyether ketone with cardo was used for lightning strike protection of composite laminates. The distribution of the interlaminar film was investigated by experimental and numerical methods. Artificial lightning strike tests were conducted for 12-film carbon nanotube and traditional surface silver coating protected specimens. Then corresponding finite element models (FEMs) were established to analyze the lightning strike effect and validated by the experimental results. Based on the FEMs, the number, distribution and thickness of interlaminar film were investigated in order to obtain equivalent protection effect with the traditional surface silver coating. The results show that only the first two layers were damaged for the surface silver coating protected specimen, while 5 layers were ablated for the 12-film protected specimen. Lightning strike damage area of the laminate protected with 5-film carbon nanotube is almost the same as that of the laminate protected with 12-film carbon nanotube. Compared with traditional surface silver coating protection, one film protection with thickness of 360 μm can make the laminate to obtain equivalent damage depth, 54.8% smaller damage area and 58% less additional weight. And reparability of the laminate is better than that of the laminate protected with 5 interlaminar films.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []