Synthesis and evaluation of [11C]PyrATP-1, a novel radiotracer for PET imaging of glycogen synthase kinase-3β (GSK-3β)

2014 
Abstract Introduction The dysfunction of glycogen synthase kinase-3β (GSK-3β) has been implicated in a number of diseases, including Alzheimer’s disease. The ability to non-invasively quantify GSK-3β activity in vivo is therefore of critical importance, and this work is focused upon development of inhibitors of GSK-3β radiolabeled with carbon-11 to examine quantification of the enzyme using positron emission tomography (PET) imaging. Methods 11 C PyrATP-1 was prepared from the corresponding desmethyl-piperazine precursor in an automated synthesis module. In vivo rodent and primate imaging studies were conducted on a Concorde MicroPET P4 scanner to evaluate imaging properties and in vitro autoradiography studies with rat brain samples were carried out to examine specific binding. Results 2035 ± 518 MBq (55 ± 14 mCi) of [ 11 C]PyrATP-1 was obtained (1%–2% non-corrected radiochemical yield at end-of-synthesis based upon [ 11 C]CO 2 ) with high chemical (> 95%) and radiochemical (> 99%) purities, and good specific activities (143 ± 52 GBq/μmol (3874 ± 1424 Ci/mmol)), n = 5. In vivo microPET imaging studies revealed poor brain uptake in rodents and non-human primates. Pretreatment of rodents with cyclosporin A resulted in moderately increased brain uptake suggesting Pgp transporter involvement. Autoradiography demonstrated high levels of specific binding in areas of the rodent brain known to be rich in GSK-3β. Conclusion 11 C PyrATP-1 is readily synthesized using standard carbon-11 radiochemistry. However the poor brain uptake in rodents and non-human primates indicates that the radiotracer is not suitable for the purposes of quantifying GSK-3β in neurological and psychiatric disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    19
    Citations
    NaN
    KQI
    []