Escape statistics for parameter sweeps through bifurcations.

2012 
We consider the dynamics of systems undergoing parameter sweeps through bifurcation points in the presence of noise. Of interest here are local codimension-one bifurcations that result in large excursions away from an operating point that is transitioning from stable to unstable during the sweep, since information about these ``escape events'' can be used for system identification, sensing, and other applications. The analysis is based on stochastic normal forms for the dynamic saddle-node and subcritical pitchfork bifurcations with a time-varying bifurcation parameter and additive noise. The results include formulation and numerical solution for the distribution of escape events in the general case and analytical approximations for delayed bifurcations for which escape occurs well beyond the corresponding quasistatic bifurcation points. These bifurcations result in amplitude jumps encountered during parameter sweeps and are particularly relevant to nano- and microelectromechanical systems, for which noise can play a significant role.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    18
    Citations
    NaN
    KQI
    []