Intrinsic field effect and Hall mobility in multilayer III-VI 2D semiconductor InSe FETs

2015 
Graphene-like two-dimensional (2D) materials, not only are interesting for their exotic electronic structure and fundamental electronic transport or optical properties but also, hold promises for device miniaturization down to atomic thickness. As one material belonging to this category, InSe is not only a promising candidate for optoelectronic devices but also has potential for ultrathin field effect transistor (FET) with high mobility transport. In this work, various substrates such as PMMA, bare silicon oxide, passivated silicon oxide, and silicon nitride were used to fabricate multi-layer InSe FET devices. Through back gating and Hall measurement in four-probe configuration, the devices' field effect mobility and intrinsic Hall mobility were extracted at various temperatures to study the material's intrinsic transport behavior and the effect of dielectric substrate. The sample's field effect and Hall mobilities over the range of 77-300K fall in the range of 0.1-2.0$\times$10$^3$ cm$^2$/Vs, which are comparable or better than the state of the art FETs made of 2D transition metal-dichalcogenides.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []