Ginsenoside 20(S)-Rh2 promotes cellular pharmacokinetics and intracellular antibacterial activity of levofloxacin against Staphylococcus aureus through drug efflux inhibition and subcellular stabilization.

2021 
Intracellular Staphylococcus aureus (S. aureus) often causes clinical failure and relapse after antibiotic treatment. We previously found that 20(S)-ginsenoside Rh2 [20(S)-Rh2] enhanced the therapeutic effect of quinolones in a mouse model of peritonitis, which we attributed to the increased concentrations of quinolones within bacteria. In this study, we investigated the enhancing effect of 20(S)-Rh2 on levofloxacin (LVF) from a perspective of intracellular bacteria. In S. aureus 25923-infected mice, coadministration of LVF (1.5 mg/kg, i.v.) and 20(S)-Rh2 (25, 50 mg/kg, i.g.) markedly increased the survival rate, and decreased intracellular bacteria counts accompanied by increased accumulation of LVF in peritoneal macrophages. In addition, 20(S)-Rh2 (1, 5, 10 μM) dose-dependently increased the uptake and accumulation of LVF in peritoneal macrophages from infected mice without drug treatment. In a model of S. aureus 25923-infected THP-1 macrophages, we showed that 20(S)-Rh2 (1, 5, 10 μM) dose-dependently enhanced the intracellular antibacterial activity of LVF. At the cellular level, 20(S)-Rh2 increased the intracellular accumulation of LVF by inhibiting P-gp and BCRP. PK-PD modeling revealed that 20(S)-Rh2 altered the properties of the cell but not LVF. At the subcellular level, 20(S)-Rh2 did not increase the distribution of LVF in lysosomes but exhibited a stronger sensitizing effect in acidic environments. Molecular dynamics (MD) simulations showed that 20(S)-Rh2 improved the stability of the DNA gyrase-LVF complex in lysosome-like acidic conditions. In conclusion, 20(S)-Rh2 promotes the cellular pharmacokinetics and intracellular antibacterial activities of LVF against S. aureus through efflux transporter inhibition and subcellular stabilization, which is beneficial for infection treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    0
    Citations
    NaN
    KQI
    []