Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb

2019 
Sinc-shaped temporal pulse trains have a spectrally efficient, rectangular Nyquist spectrum. We demonstrate the simultaneous and reconfigurable optical generation of multiple Nyquist-shaped wavelength-division-multiplexed (WDM) channels having temporal sinc-shaped pulse trains as data carriers. The channels are generated through the insertion of coherent lines using cascaded continuous-wave amplitude modulation around the spectral lines of a microresonator-based Kerr optical frequency comb. For each of nine Kerr frequency comb lines, we insert sub-groups of uniform and coherent lines to generate nine WDM channels. The deviations from ideal Nyquist pulses for the nine channels at repetition rates of 6 and 2 GHz are between 4.2%–6.1% and 2%–4.5%, respectively. Each WDM channel is modulated with on–off keying (OOK) at 6 Gbit/s. In addition, we show the reconfigurability of this method by varying the number of WDM channels, the generated sinc-shaped pulse train repetition rates, the duration, and the number of zero-crossings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    8
    Citations
    NaN
    KQI
    []