Controlled Assembly of Lignocellulosic Biomass Components and Properties of Reformed Materials

2017 
Reforming whole lignocellulosic biomass into value-added materials has yet to be achieved mainly due to the infusible nature of biomass and its recalcitrance to dissolve in common organic solvents. Recently, the solubility of biomass in ionic liquids (ILs) has been explored to develop all-lignocellulosic materials; however, efficient dissolution and therefore production of value-added materials with desired mechanical properties remain a challenge. This article presents an approach to producing high-performance lignocellulosic films from hybrid poplar wood. An autohydrolysis step that removes ≤50% of the hemicellulose fraction is performed to enhance biomass solvation in 1-ethyl-3-methyl imidazolium acetate ([C2mim][OAc]). The resulting biomass–IL solution is then cast into free-standing films using different coagulating solvents, yet preserving the polymeric nature of the biomass constituents. Methanol coagulated films exhibit a cocontinuous 3D-network structure with dispersed domains of less than 100 nm...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    17
    Citations
    NaN
    KQI
    []