Laser Writable Multifunctional van der Waals Heterostructures.
2020
Achieving multifunctional van der Waals nanoelectronic devices on one structure is essential for the integration of 2D materials; however, it involves complex architectural designs and manufacturing processes. Herein, a facile, fast, and versatile laser direct write micro/nanoprocessing to fabricate diode, NPN (PNP) bipolar junction transistor (BJT) simultaneously based on a pre-fabricated black phosphorus/molybdenum disulfide heterostructure is demonstrated. The PN junctions exhibit good diode rectification behavior. Due to different carrier concentrations of BP and MoS2 , the NPN BJT, with a narrower base width, renders better performance than the PNP BJT. Furthermore, the current gain can be modulated efficiently through laser writing tunable base width WB , which is consistent with the theoretical results. The maximum gain for NPN and PNP is found to be ≈41 (@WB ≈600 nm) and ≈12 (@WB ≈600 nm), respectively. In addition, this laser write processing technique also can be utilized to realize multifunctional WSe2 /MoS2 heterostructure device. The current work demonstrates a novel, cost-effective, and universal method to fabricate multifunctional nanoelectronic devices. The proposed approach exhibits promise for large-scale integrated circuits based on 2D heterostructures.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
1
Citations
NaN
KQI