Planar hot-electron photodetector utilizing high refractive index MoS 2 in fabry-perot perfect absorber.

2020 
Hot electron photodetection (HEPD) excited by surface plasmon can circumvent bandgap limitations, opening pathways for additional energy harvesting. However, the costly and time-consuming lithography has long been a barrier for large-area and mass production of HEPD. In this paper, we proposed a planar and electron beam lithography-free hot electron photodetector based on the Fabry-Perot resonance composed of Au/MoS2/Au cavity. The hot electron photodetector has a nanoscale thickness, high spectral tenability, and multicolour photoresponse in the near-infrared region due to the increased round-trip phase shift by using high refractive index MoS2. We predict that the photoresponsivity can achieve up to 23.6 mA/W when double cavities are integrated with the Fabry-Perot cavity. The proposed hot electron photodetector that has a nanoscale thickness and planar stacking is a perfect candidate for large-area and mass production of HEPD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    8
    Citations
    NaN
    KQI
    []