Accessing the Hidden Microbial Diversity of Aphids: an Illustration of How Culture-Dependent Methods Can Be Used to Decipher the Insect Microbiota

2018 
Microorganism communities that live inside insects can play critical roles in host development, nutrition, immunity, physiology, and behavior. Over the past decade, high-throughput sequencing reveals the extraordinary microbial diversity associated with various insect species and provides information independent of our ability to culture these microbes. However, their cultivation in the laboratory remains crucial for a deep understanding of their physiology and the roles they play in host insects. Aphids are insects that received specific attention because of their ability to form symbiotic associations with a wide range of endosymbionts that are considered as the core microbiome of these sap-feeding insects. But, if the functional diversity of obligate and facultative endosymbionts has been extensively studied in aphids, the diversity of gut symbionts and other associated microorganisms received limited consideration. Herein, we present a culture-dependent method that allowed us to successfully isolate microorganisms from several aphid species. The isolated microorganisms were assigned to 24 bacterial genera from the Actinobacteria, Firmicutes, and Proteobacteria phyla and three fungal genera from the Ascomycota and Basidiomycota phyla. In our study, we succeeded in isolating already described bacteria found associated to aphids (e.g., the facultative symbiont Serratia symbiotica), as well as microorganisms that have never been described in aphids before. By unraveling a microbial community that so far has been ignored, our study expands our current knowledge on the microbial diversity associated with aphids and illustrates how fast and simple culture-dependent approaches can be applied to insects in order to capture their diverse microbiota members.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    26
    Citations
    NaN
    KQI
    []