False Vacuum Decay in Rotating BTZ Spacetimes

2021 
We analyse vacuum decay in rotating BTZ black hole spacetimes with the thin wall approximation. Possible parameter regions for the vacuum decay are clarified. We find that the nucleation rate is dominated by the bounce solution with the static shell configuration. The nucleation rate of the static shell decreases with the mass of the initial black hole. For a larger/smaller value of the initial black hole, the nucleation rate can be smaller/larger than that of the Coleman De Luccia vacuum decay in the pure AdS spacetime. Through the vacuum decay, the black hole gains its mass and loses the horizon area. We also find that the nucleation rate increases with increasing the angular momentum of the spacetime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []