The isotropic Cosserat shell model including terms up to $O(h^5)$. Part I: Derivation in matrix notation

2020 
We present a new geometrically nonlinear Cosserat shell model incorporating effects up to order $O(h^{5})$ in the shell thickness $h$ . The method that we follow is an educated 8-parameter ansatz for the three-dimensional elastic shell deformation with attendant analytical thickness integration, which leads us to obtain completely two-dimensional sets of equations in variational form. We give an explicit form of the curvature energy using the orthogonal Cartan-decomposition of the wryness tensor. Moreover, we consider the matrix representation of all tensors in the derivation of the variational formulation, because this is convenient when the problem of existence is considered, and it is also preferential for numerical simulations. The step by step construction allows us to give a transparent approximation of the three-dimensional parental problem. The resulting 6-parameter isotropic shell model combines membrane, bending and curvature effects at the same time. The Cosserat shell model naturally includes a frame of orthogonal directors, the last of which does not necessarily coincide with the normal of the surface. This rotation-field is coupled to the shell-deformation and augments the well-known Reissner-Mindlin kinematics (one independent director) with so-called in-plane drill rotations, the inclusion of which is decisive for subsequent numerical treatment and existence proofs. As a major novelty, we determine the constitutive coefficients of the Cosserat shell model in dependence on the geometry of the shell which are otherwise difficult to guess.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    7
    Citations
    NaN
    KQI
    []