Thermoelectric Properties of Mn Doped Cu12-xMnxSb4S13 Tetrahedrites

2016 
In this study, Mn doped Cu12-xMnxSb4S13(x=0, 0.5, 1.0, and 2.0) tetrahedrite samples were prepared by melting and annealing followed by hot press sintering. Powder X-ray diffraction and scanning electron microscopy and electron energy dispersive spectroscopy analysis were performed for the samples, and the thermoelectric transport properties of samples were characterized. The experimental results showed that the synthetic tetrahedrites were consisted of principal Cu12Sb4S13 phase and a small amount of secondary Cu3SbS4 and CuSbS2. The electrical conductivity of the tetrahedrites decreased with increasing the Mn doping amount. Contrary to the electrical conductivity, the Seebeck coefficient of the tetrahedrites increased with increasing Mn doping amount. The thermal conductivity decreased with increasing Mn doping amount due to the suppression of the carrier contribution, as well as due to the substitution effect of Mn on the Cu site. For the Mn doped Cu12-xMnxSb4S13 compounds with x=0.5, 1.0, and 2.0, the ZT values decreased with the increase of Mn doping amount, a maximum ZT=0.89 was obtained for the Mn doped compound with x=0.5.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    10
    Citations
    NaN
    KQI
    []