SARS-CoV-2 activates ER stress and Unfolded protein response

2021 
Coronavirus disease-2019 (COVID-19) pandemic caused by the SARS-CoV-2 coronavirus infection is a major global public health concern affecting millions of people worldwide. The scientific community has joint efforts to provide effective and rapid solutions to this disease. Knowing the molecular, transmission and clinical features of this disease is of paramount importance to develop effective therapeutic and diagnostic tools. Here, we provide evidence that SARS-CoV-2 hijacks the glycosylation biosynthetic, ER-stress and UPR machineries for viral replication using a time-resolved (0-48 hours post infection, hpi) total, membrane as well as glycoproteome mapping and orthogonal validation. We found that SARS-CoV-2 induces ER stress and UPR is observed in Vero and Calu-3 cell lines with activation of the PERK-eIF2-ATF4-CHOP signaling pathway. ER-associated protein upregulation was detected in lung biopsies of COVID-19 patients and associated with survival. At later time points, cell death mechanisms are triggered. The data show that ER stress and UPR pathways are required for SARS-CoV-2 infection, therefore representing a potential target to develop/implement anti-CoVID-19 drugs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    130
    References
    2
    Citations
    NaN
    KQI
    []