Estimating Time Series Soil Moisture by Applying Recurrent Nonlinear Autoregressive Neural Networks to Passive Microwave Data over the Heihe River Basin, China

2017 
A method using a nonlinear auto-regressive neural network with exogenous input (NARXnn) to retrieve time series soil moisture (SM) that is spatially and temporally continuous and high quality over the Heihe River Basin (HRB) in China was investigated in this study. The input training data consisted of the X-band dual polarization brightness temperature (TB) and the Ka-band V polarization TB from the Advanced Microwave Scanning Radiometer II (AMSR2), Global Land Satellite product (GLASS) Leaf Area Index (LAI), precipitation from the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM), and a global 30 arc-second elevation (GTOPO-30). The output training data were generated from fused SM products of the Japan Aerospace Exploration Agency (JAXA) and the Land Surface Parameter Model (LPRM). The reprocessed fused SM from two years (2013 and 2014) was inputted into the NARXnn for training; subsequently, SM during a third year (2015) was estimated. Direct and indirect validations were then performed during the period 2015 by comparing with in situ measurements, SM from JAXA, LPRM and the Global Land Data Assimilation System (GLDAS), as well as precipitation data from TRMM and GPM. The results showed that the SM predictions from NARXnn performed best, as indicated by their higher correlation coefficients (R ≥ 0.85 for the whole year of 2015), lower Bias values (absolute value of Bias ≤ 0.02) and root mean square error values (RMSE ≤ 0.06), and their improved response to precipitation. This method is being used to produce the NARXnn SM product over the HRB in China.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    7
    Citations
    NaN
    KQI
    []