Electrical and Thermal Transport Properties of Layered Superconducting Ca10(Pt4As8)((Fe0.86Pt0.14)2As2)5 Single Crystal

2019 
We have synthesized single crystals of iron-based superconducting Ca10(Pt4As8)((Fe0.86Pt0.14)2As2)5 and performed extensive measurements on their transport properties. A remarkable difference in the behavior and a large anisotropy between in-plane and out-of-plane resistivity was observed. Disorder could explain the in-plane square-root temperature dependence resistivity, and interlayer incoherent scattering may contribute to the out-of-plane transport property. Along the ab plane, the estimated value of the coherence length is 15.5 A. From measurements of the upper critical magnetic field Hc2 (T ≥ 20 K), we estimate Hc2(0) = 313 T. Thermal conductivity for Ca10(Pt4As8)((Fe0.86Pt0.14)2As2)5 is relatively small, which can be accounted for by the disorder in the crystal and the low-charge carrier density as verified by the Hall effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []