NetTraj: A Network-based Vehicle Trajectory Prediction Model with Directional Representation and Spatiotemporal Attention Mechanisms.

2021 
Trajectory prediction of vehicles in city-scale road networks is of great importance to various location-based applications such as vehicle navigation, traffic management, and location-based recommendations. Existing methods typically represent a trajectory as a sequence of grid cells, road segments or intention sets. None of them is ideal, as the cell-based representation ignores the road network structures and the other two are less efficient in analyzing city-scale road networks. Moreover, previous models barely leverage spatial dependencies or only consider them at the grid cell level, ignoring the non-Euclidean spatial structure shaped by irregular road networks. To address these problems, we propose a network-based vehicle trajectory prediction model named NetTraj, which represents each trajectory as a sequence of intersections and associated movement directions, and then feeds them into a LSTM encoder-decoder network for future trajectory generation. Furthermore, we introduce a local graph attention mechanism to capture network-level spatial dependencies of trajectories, and a temporal attention mechanism with a sliding context window to capture both short- and long-term temporal dependencies in trajectory data. Extensive experiments based on two real-world large-scale taxi trajectory datasets show that NetTraj outperforms the existing state-of-the-art methods for vehicle trajectory prediction, validating the effectiveness of the proposed trajectory representation method and spatiotemporal attention mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    1
    Citations
    NaN
    KQI
    []