D3DistalMutation: a Database to Explore the Effect of Distal Mutations on Enzyme Activity.

2021 
Enzyme activity is affected by amino acid mutations, particularly mutations near the active site. Increasing evidence has shown that distal mutations more than 10 A away from the active site may significantly affect enzyme activity. However, it is difficult to study the enzyme regulation mechanism of distal mutations due to the lack of a systematic collection of three-dimensional (3D) structures, highlighting distal mutation site and the corresponding enzyme activity change. Therefore, we constructed a distal mutation database, namely, D3DistalMutation, which relates the distal mutation to enzyme activity. As a result, we observed that approximately 80% of distal mutations could affect enzyme activity and 72.7% of distal mutations would decrease or abolish enzyme activity in D3DistalMutation. Only 6.6% of distal mutations in D3DistalMutation could increase enzyme activity, which have great potential to the industrial field. Among these mutations, the Y to F, S to D, and T to D mutations are most likely to increase enzyme activity, which sheds some light on industrial catalysis. Distal mutations decreasing enzyme activity in the allosteric pocket play an indispensable role in allosteric drug design. In addition, the pockets in the enzyme structures are provided to explore the enzyme regulation mechanism of distal mutations. D3DistalMutation is accessible free of charge at https://www.d3pharma.com/D3DistalMutation/index.php.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []