Sample Pooling as a Strategy of SARS-COV-2 Nucleic Acid Screening Increases the False-negative Rate

2020 
Identification of less costly and accurate methods for monitoring novel coronavirus disease 2019 (CoViD-19) transmission has attracted much interest in recent times. Here, we evaluated a pooling method to determine if this could improve screening efficiency and reduce costs while maintaining accuracy in Guangzhou, China. We evaluated 8097 throat swap samples collected from individuals who came for a health check-up or fever clinic in The Third Affiliated Hospital, Southern Medical University between March 4, 2020 and April 26, 2020. Samples were screened for CoViD-19 infection using the WHO-approved quantitative reverse transcription PCR (RT-qPCR) primers. The positive samples were classified into two groups (high or low) based on viral load in accordance with the CT value of COVID-19 RT-qPCR results. Each positive RNA samples were mixed with COVID-19 negative RNA or ddH2O to form RNA pools. Samples with high viral load could be detected in pool negative samples (up to 1/1000 dilution fold). In contrast, the detection of RNA sample from positive patients with low viral load in a pool was difficult and not repeatable. Our results show that the COVID-19 viral load significantly influences in pooling efficacy. COVID-19 has distinct viral load profile which depends on the timeline of infection. Thus, application of pooling for infection surveillance may lead to false negatives and hamper infection control efforts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    5
    Citations
    NaN
    KQI
    []