Engineering amyloid and amyloid-like morphologies of β-lactoglobulin

2022 
Abstract Background Depending on environmental conditions, almost all proteins can form amyloid and amyloid-like aggregates that have unique functional properties. This opens numerous applications for designed aggregates in materials, medical and food applications. However, it is poorly understood how the amyloid (-like) aggregation and their resulting morphology is induced or influenced by various environmental and processing conditions. Scope and approach We identified and summarized conditions under which amyloid (-like) aggregates are formed and their impact on aggregate morphology. The focus is on β-lactoglobulin, but generic effects on other proteins are discussed, in order to elucidate common mechanistic properties. Key findings and conclusions The flexibility of linear aggregates can be evaluated by comparing the persistence (Lp) and contour length (i.e., length when completely stretched; Lc). Shorter and more flexible amyloid-like aggregates (Lp   Lc). Semi-flexible morphologies can align in liquid crystalline phases or interact with linear polysaccharides; while flexible aggregates can entangle. This allows for various possibilities to build higher order fibril or hybrid networks for various applications, such as bundles, coatings/films, or gels. This knowledge is crucial to produce specific morphologies for applications and to draw conclusions about how morphologies will be affected during processing (e.g., shearing).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    128
    References
    0
    Citations
    NaN
    KQI
    []