Event-Triggered Adaptive Optimal Control With Output Feedback: An Adaptive Dynamic Programming Approach.

2020 
This article presents an event-triggered output-feedback adaptive optimal control method for continuous-time linear systems. First, it is shown that the unmeasurable states can be reconstructed by using the measured input and output data. An event-based feedback strategy is then proposed to reduce the number of controller updates and save communication resources. The discrete-time algebraic Riccati equation is iteratively solved through event-triggered adaptive dynamic programming based on both policy iteration (PI) and value iteration (VI) methods. The convergence of the proposed algorithm and the closed-loop stability is carried out by using the Lyapunov techniques. Two numerical examples are employed to verify the effectiveness of the design methodology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    2
    Citations
    NaN
    KQI
    []