Benchmarking of 3-D MOSFET Architectures: Focus on the Impact of Surface Roughness and Self-Heating

2018 
Tremendous improvements in the fabrication technology have allowed to scale the physical dimensions of the transistors and also to develop different promising 3-D architectures that may allow continuing Moore’s law. In this paper, we perform a comparative delay analysis of different 3-D device architectures and study the impact of surface roughness and self-heating on the on-current using a comprehensive in-house simulation framework comprising Schrodinger, Poisson, and Boltzmann transport equation solvers and comprising relevant scattering mechanisms and self-heating. Our results highlight that parasitic capacitance can alter the relative ranking of the architectures from delay point of view. We demonstrate that surface roughness can cause architecture and material-dependent current degradation, and hence, it is necessary to account for it in simulation-based benchmarking different architectures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    6
    Citations
    NaN
    KQI
    []