Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway

2019 
Abstract Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory disease induced by glucocorticoids. Marrow mesenchymal stem cells (MSCs) differentiate into multiple bone matrix cells and have been used as cell-based therapies to treat ONFH. However, the osteogenesis of MSCs isolated from patients with SONFH is significantly decreased. Polydatin has been widely used in traditional Chinese remedies due to its multiple pharmacological actions. As shown in our previous study, Polydatin protects from oxidative stress and promotes BMSC migration. However, little is known about its role in BMSC (Bone marrow mesenchymal stem cells) osteogenesis; therefore, we further investigated the effect and mechanism of Polydatin in hBMSC osteogenesis. The ability of Polydatin to promote the proliferation and osteogenic differentiation of hBMSCs was determined using the MTT assay, ALP staining and the ALP activity assay. Next, qPCR and western blotting were performed to measure the levels of genes and proteins related to the osteogenesis of hBMSCs. Then, the effect of Polydatin on the nuclear translocation of β-catenin was determined using immunofluorescence staining. Polydatin (30 μM) markedly enhanced the proliferation of hBMSCs and alkaline phosphatase (ALP) activity. Additionally, it also significantly upregulated the expression of osteogenic genes (Runx2, osteopontin, DLX5, osteocalcin, collagen type I and BMP2) and components of the Wnt signaling pathway (β-catenin, Lef1, TCF7, c-jun, c-myc and cyclin D). These osteogenesis-potentiating effects of Polydatin were blocked by Noggin, an inhibitor of the BMP pathway, and DKK1, an inhibitor of the Wnt/β-catenin pathway. However, DKK1 did not affect Polydatin-induced BMP2 expression. Based on our results, Polydatin promotes the proliferation and osteogenic differentiation of hBMSCs through the BMP2-Wnt/β-catenin signaling pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    34
    Citations
    NaN
    KQI
    []