Pattern Formation With Locally Active S-Type NbOₓ Memristors

2019 
The main focus of this paper is the evolution of complex behavior in a system of coupled nonlinear memristor circuits depending on the applied coupling conditions. Thereby, the parameter space for the local activity and the edge-of-chaos domain will be determined to enable the emergence of the pattern formation in locally coupled cells according to Chua’s principle. Each cell includes a Niobium oxide-based memristor, which may feature a locally active behavior once it is suitably biased on the negative differential resistance region of its DC current-voltage characteristic. It will be shown that there exists a domain of parameters under which each uncoupled cell may become locally active around a stable bias state. More specifically, under these conditions, the coupled cells are on the edge-of-chaos, and can support the static and dynamic pattern formation. The emergence of such complex spatio-temporal behavior in homogeneous structures is a prerequisite for information processing. The theoretical results are confirmed by measurements as well as by the numerical simulations of the accurate device and circuit models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    16
    Citations
    NaN
    KQI
    []