Improved Ultrasound Microvessel Imaging Using Deconvolution with Total Variation Regularization.

2021 
Abstract Singular value decomposition-based clutter filters can robustly reject tissue clutter, allowing for detection of slow blood flow in imaging microvasculature. However, to identify microvessels, high ultrasound frequency must be used to increase the spatial resolution at the expense of shorter depth of penetration. Deconvolution using Tikhonov regularization is an imaging processing method widely used to improve spatial resolution. The ringing artifact of Tikhonov regularization, though, can produce image artifacts such as non-existent microvessels, which degrade image quality. Therefore, a deconvolution method using total variation is proposed in this study to improve spatial resolution and mitigate the ringing artifact. Performance of the proposed method was evaluated using chicken embryo brain, ex ovo chicken embryo chorioallantoic membrane and tumor data. Results revealed that the reconstructed power Doppler (PD) images are substantially improved in spatial resolution compared with original PD images: the full width half-maximum (FWHM) of the cross-sectional profile of a microvessel was improved from 132 to 83 µm. Two neighboring microvessels that were 154 µm apart were better separated using the proposed method than conventional PD imaging. Additionally, 223 FWHMs measured from the cross-sectional profiles of 223 vessels were used to determine the improvement in FWHM with the proposed method statistically. The mean ± standard deviation of the FWHM without and with the proposed method was 233.19 ± 85.08 and 172.31 ± 75.11 μm, respectively; the maximum FWHM without and with the proposed method was 693.01 and 668.69 μm; and the minimum FWHM without and with the proposed method was 73.92 and 45.74 μm. There were statistically significant differences between FWHMs with and without the proposed method according to the rank-sum test, p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []