High-throughput chemiluminescence immunoassay based on Co2+/hemin synergistic catalysis for sensitive detection tetrabromobisphenol A bis(2-hydroxyethyl) ether in the environments

2020 
Abstract Here, a novel chemiluminescence (CL) immunoassay was fabricated for sensitive determination of tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE), one of typical tetrabromobisphenol A derivatives. At the indirectly competitive method, the synthesized PS@hemin@Co2+ was labelled by secondary antibody (Ab2) instead of common natural enzymes, which showed excellent catalysis towards the decomposition of luminol-H2O2 for producing CL signal. Furthermore, the CL signal was greatly amplified owing to the synergistic catalysis of hemin and Co2+ in the detection system. Under the optimized conditions, the established method offered (i) low detection limit (LOD, 0.9 μg/L), which was almost 5 times lower than that using a conventional ELISA with the same antibody; (ii) a good linearity (1.6–14.3 μg/L); (iii) satisfactory accuracy and precision (recoveries, 89.67–125.33%; CV, 2.75–8.37%). The proposed CL immunoassay was applied for analysis of environmental samples from various sources collected from Jiangsu and Zhejiang province, China. And the detected concentrations were ranged in 2.4–3.7 μg/L in environmental waters and 1.8–2.4 ng/g (dry weight, dw) in soil samples, indicating great potential for trace TBBPA-DHEE detection from environmental samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    4
    Citations
    NaN
    KQI
    []