Ten-year optical monitoring of PKS 0735+178: historical comparison, multiband behavior, and variability timescales

2007 
Aims. New data and results on the optical behavior of the prominent blazar PKS 0735+178 (also known as OI 158, S3 0735+17, DA 237, IES 0735+178, 3EG J0737+1721) are presented, through the most continuous BVR/data available in the period 1994-2004 (about 500 nights of observations). In addition, the whole historical light curve, and a new photometric calibration of comparison stars in the field of this source are reported. Methods. Several methods for time series analysis of sparse data sets are developed, adapted, and applied to the reconstructed historical light curve and to each observing season of our unpublished optical database on PKS 0735+178. Optical spectral indexes are calculated from the multi-band observations and studied on long-term (years) durations as well. For the first time in this source, variability modes, characteristic timescales, and the signal power spectrum are explored and identified over 3 decades in time with sufficient statistics. The novel investigation of mid-term optical scales (days, weeks), could be also applied and compared to blazar gamma-ray light curves that will be provided, on the same timescales, by the forthcoming GLAST observatory. Results. In the last 10 years the optical emission of PKS 0735+178 exhibited a rather achromatic behavior and a variability mode resembling the shot-noise. The source was at an intermediate or low brightness level, showing a mild flaring activity and a superimposition/succession of rapid and slower flares, without extraordinary and isolated outbursts, but, at any rate, characterized by one major active phase in 2001. Several mid-term scales of variability were found, the more common falling into duration intervals of about 27-28 days, 50-56 days and 76-79 days. Rapid variability in the historical light curve appears to be modulated by a general, slower, and rather oscillating temporal trend, where typical amplitudes of about 4.5, 8.5, and 11-13 years can be identified. This spectral and temporal analysis, accompanying our data publication, suggests the occurrence of distinctive signatures at mid-term durations that can likely be of transitory nature. On the other hand the possible pseudo-cyclical or multi-component modulations at long times could be more stable, recurrent and correlated to the bimodal radio flux behavior and the twisted radio structure observed over several years in this blazar.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    122
    References
    74
    Citations
    NaN
    KQI
    []