Tailoring the electrical conductivity and hardening in BiFeO3 ceramics

2020 
Abstract In this report, the influence of cobalt doping and annealing atmosphere on the electrical conductivity and polarization switching of BiFeO3 (BFO) ceramics was studied. Electrical conductivity as well as hardening behavior has been found to increase with introduction of acceptor C o F e ' sites. BFO ceramics doped with Co exhibit p-type conductivity, dominated by Fe4+ defects, which can be successfully reduced during high-temperature annealing in N2. However, indications of local reduction were found, presumably on domain walls and grain boundaries. A mechanism of hardening is proposed, which assumes two types of pinning centers: i) V B i ' ' ' and F e F e • related and ii) C o F e ' and V O • • related, most probably bound into complexes, which are shown to play the key role in the hardening behavior and hysteresis loop pinching and biasing. The results of this study could further promote designing local and bulk conductivity and hardening properties of BFO-based materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    4
    Citations
    NaN
    KQI
    []