Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE

2007 
Abstract : The Multi-sensor Improved Sea Surface Temperatures (MISST) for the Global Ocean Data Assimilation Experiment (GODAE) project intends to produce an improved, high-resolution, global, near-real-time (NRT), sea surface temperature analysis through the combination of satellite observations from complementary infrared (IR) and microwave (MW) sensors and to then demonstrate the impact of these improved sea surface temperatures (SSTs) on operational ocean models, numerical weather prediction, and tropical cyclone intensity forecasting. Despite the importance and wide usage of operational SST analyses, significant weaknesses remain in the existing operational products. The improved sensors on the Terra, Aqua, and EnviSAT-1 satellites, in conjunction with previously existing sensors on several other US Navy, NASA, and NOAA satellites, provide the opportunity for notable advances in SST measurement. In addition to more frequent coverage for increased temporal resolution, these sensors permit the combination of highly complementary IR and MW retrievals. This project has two distinct goals: (1) producing an improved sea surface temperature (SST) product through the combination of observations from complementary infrared (IR) and microwave (MW) sensors, and (2) demonstrating the impact of improved multi-sensor SST products on operational ocean models, numerical weather prediction, and tropical cyclone intensity forecasting. Close collaboration and the international coordinated exchange of SST products with error statistics with operational agencies will optimize utility of these new data streams. This project will make a direct US contribution to the Global Ocean Data Assimilation Experiment (GODAE) by working within the GODAE High-Resolution SST Pilot Project (GHRSST-PP). By contributing to the GHRSST-PP this team will minimize duplication of efforts, harmonize research and development activities, and maximize data access.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    3
    Citations
    NaN
    KQI
    []