Structural and Functional Characterization of the Zn(II) Site in Dimethylargininase-1 (DDAH-1) from Bovine Brain Zn(II) RELEASE ACTIVATES DDAH-1

2001 
Abstract l-N ω,N ω-Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) is a Zn(II)-containing enzyme that, through hydrolysis of side-chain methylated l-arginines, regulates the activity of nitric-oxide synthase. Herein we report the structural and functional properties of the Zn(II)-binding site in DDAH-1 from bovine brain. Activity measurements of the native and metal-free enzyme have revealed that the endogenously bound Zn(II) inhibits the enzyme. Native DDAH-1 could be fully or partially activated using various concentrations of phosphate, imidazole, histidine, and histamine, a process that is paralleled by the release of Zn(II). The slow activation of the enzyme by the bulky complexing agents EDTA and 1,10-phenantroline suggests that the Zn(II)-binding site is partially buried in the protein structure. The apparent Zn(II)-dissociation constant of 4.2 nm, determined by19F NMR using the chelator 5F-BAPTA (1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N′,N′-tetraacetic acid), lies in the range of intracellular free Zn(II) concentrations. These results suggest a regulatory role for the Zn(II)-binding site. The coordination environment of the Zn(II) in DDAH-1 has been examined by Zn K-edge x-ray absorption spectroscopy. The extended x-ray absorption fine structure observed is consistent with Zn(II) being coordinated by 2 S and 2 N (or O) atoms. The biological implications of these findings are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    48
    Citations
    NaN
    KQI
    []