Polymeric Membrane Fluoride-Selective Electrodes Using Lewis Acidic Organo-Antimony(V) Compounds as Ionophores.

2020 
Four Lewis acidic organo-antimony(V) compounds with strong binding affinity to fluoride were used for the first time as ionophores to fabricate polymeric membrane fluoride-selective electrodes. Improved detection limits and significant anti-Hofmeister selectivity could be achieved by optimizing ionophores, lipophilic additives, and plasticizers. Membrane electrodes fabricated with tetrakis-(pentafluorophenyl)stibonium (ionophore 2) performed best in detection limit, sensitivity, and selectivity. Optimal performance was obtained by fluoride with a slope of -59.5 mV/decade in the linear range of 1 × 10-5 to 4 × 10-2 M and a detection limit of 5 × 10-6 M. Studies on the influence of sample solution pH demonstrate that the best pH for fluoride determination is pH 3.0. All of the electrodes studied respond rapidly (in 1 min) in different concentrations of fluoride solutions. The anion-ionophore complex constants in the membrane phase determined using the segmented sandwich membrane method correlate well with the solution-phase binding data and determined selectivity sequence of the ion-selective electrodes. The possibility of real life application of the optimized electrodes was assessed by determination of fluoride concentrations in tap water.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    7
    Citations
    NaN
    KQI
    []