Expanding access to SARS-CoV-2 IgG and IgM serologic testing using fingerstick whole blood, plasma, and rapid lateral flow assays

2021 
Serologic testing for SARS-CoV-2 antibodies can be used to confirm diagnosis, estimate seroprevalence, screen convalescent plasma donors, and assess vaccine efficacy. Several logistical and infrastructure challenges limit access to SARS-CoV-2 serologic testing. Dried blood spot (DBS) samples have been used for serology testing of various diseases in resource-limited settings. We examined the use of DBS samples and capillary blood (fingerstick) plasma collected in Microtainer tubes for SARS-CoV-2 testing with the automated Abbott ARCHITECT SARS-CoV-2 IgG (List 6R86) and IgM assays and use of venous whole blood with a prototype PANBIO rapid point-of-care lateral flow SARS-CoV-2 IgG assay. The ARCHITECT SARS-CoV-2 IgG assay was initially optimized for use with DBS, venous and capillary plasma, and venous whole blood collected from patients with symptoms and PCR-confirmed COVID-19 and negative asymptomatic controls. Assay linearity and reproducibility was confirmed with 3 contrived DBS samples, with sample stability and signal recovery after 14 days at room temperature. ARCHITECT SARS-CoV-2 IgG and IgM assay results showed high concordance between fingerstick DBS and venous DBS samples, and between fingerstick DBS and venous whole blood samples (n=61). Discordant results were seen in 3 participants (2 IgG, 1 IgM) who were in the process of seroreversion at the time of sample collection and had results near the assay cutoff. Use of fingerstick plasma collected in Microtainer tubes (n=109) showed 100% concordant results (R2=0.997) with matched patient venous plasma on the ARCHITECT SARS-CoV-2 IgG assay. High concordance of assay results (92.9% positive, 100% negative) was also observed for the PANBIO SARS-CoV-2 IgG assay compared to the ARCHITECT SARS-CoV-2 IgG assay run with matched venous plasma (n=61). Fingerstick DBS and plasma samples are easy and inexpensive to collect and, along with the use of rapid point-of-care testing platforms, will expand access to SARS-CoV-2 serology testing, particularly in resource-limited areas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []