Enacting Two-Electron Transfer from a Double-Triplet State of Intramolecular Singlet Fission

2018 
A simulation-led strategy enacts two-electron transfer between an intramolecular singlet fission chromophore (tetracyanomethylene quinoidal bithiopehene with β,β′-solubilizing groups) and multielectron acceptor (anthraquinone). The thermodynamic plausibility of multielectron transfer from a double-triplet state and the absorption spectra of electron transfer (ET) products were predicted using quantum chemical simulations. These predictions are consistent with experimental observations of reduced lifetimes in time-resolved fluorescence spectroscopy, changes in transmission profile, and appearance of new absorption bands in transient absorption spectroscopy, all of which support multi-ET in the QOT2/AQ mixture. The analysis suggests 2ET is favored over 1ET by a 2.5:1 ratio.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    35
    Citations
    NaN
    KQI
    []