Revealing the deformation mechanisms of nanograins in gradient nanostructured Cu and CuAl alloys under tension

2019 
Abstract A gradient nanostructured (GNS) surface layer was induced on coarse-grained (CG) Cu and CuAl alloys by means of surface mechanical grinding treatment. The GNS/CG Cu-4.5Al sample subjected to tensile tests yields at a higher strength and fails at a higher uniform elongation (∼42%) in comparison with the GNS/CG Cu and Cu-2.2Al samples. The microstructures of the GNS/CG samples before and after tension at different strains were systematically investigated by transmission electron microscope. It is revealed that grain coarsening dominates the plastic deformation of nanograins in the GNS/CG Cu sample while the propensity of deformation twinning in nanograins increases in the GNS/CG CuAl samples. The experimental results suggested a transition of deformation mechanism of nanograins from grain coarsening to the partial dislocation associated deformation twinning in the GNS/CG Cu and CuAl alloys with increasing Al solute concentration. The obvious activation of deformation twinning accommodates the large tensile plasticity of the surface nanograins in the GNS/CG Cu-4.5Al sample. This work demonstrated that the partial dislocation associated deformation twinning is an effective deformation mechanism to retard the strain localization and to improve the tensile ductility of nanograins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    20
    Citations
    NaN
    KQI
    []