Practical Machine Learning-Based Sepsis Prediction

2020 
Sepsis is a life-threatening clinical syndrome and one of the most expensive conditions treated in hospitals. It is challenging to detect due to the nonspecific clinical signs and the absence of gold standard diagnostics. However, early recognition of sepsis and optimal treatments for sepsis are of paramount importance to improve the condition’s management and patient outcomes. This paper aims to delineate key aspects of current sepsis detection systems, including their dependency on clinical expert and laboratory biometric features requiring ongoing critical care intervention, the efficacy of vital sign measures, and the effect of the study population with respect to the precision of sepsis prediction. The AUROC performances of XGBoost models trained on a heterogenous ICU patient group (n=3932) showed significant degradations (p<0.05) as the expert and laboratory biomarker features are removed systematically and vital sign features taken in ICU settings are left. The performance of XGBoost models trained only with vital sign features on a more homogeneous group of ICU patients (n=1927) had a significantly (P<0.05) improved AUPRC to moderate level. The presented results highlight the importance of making a practical machine learning system for sepsis prediction by considering the availability of dominant features as well as personalizing sepsis prediction by configuring it to the specific demographics of a targeted population.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    2
    Citations
    NaN
    KQI
    []