Unraveling a novel ferroelectric GeSe phase and its transformation into a topological crystalline insulator under high pressure

2018 
Germanium selenide is a promising material for electronic, photovoltaic, and thermoelectric applications; however, structural phase transitions of GeSe under pressure are controversial. Combining evolutionary algorithms, density functional theory, tight-binding method, and laser-heated diamond anvil cell experiments, pressure-induced phase transitions of GeSe are thoroughly investigated. Two novel intermediate phases are predicted to exist in between the well-known α-GeSe and the recently discovered β-GeSe under high pressure. α-GeSe is found to transform into a rhombohedral crystal structure with a space group of R3m at a low hydrostatic pressure. The R3m phase of GeSe exhibits robust ferroelectricity analogous to GeTe. By further increasing the pressure to approximately 6 GPa, the R3m phase is predicted to transform into a rock-salt structure, becoming a 3D topological crystalline insulator with an inverted band structure. The newly discovered GeSe high-pressure phases greatly enrich our knowledge of IV–VI compounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    10
    Citations
    NaN
    KQI
    []