A Study of Fluid-Structure Interaction of Unsteady Flow in the Blood Vessel Using Finite Element Method

2022 
The paper presents a numerical simulation for fluid-structure interaction (FSI) of unsteady blood flow interacting with the vessel wall. The present work aims to provide a simple approach for very large deformation of the wall. The implementation of the method is straightforward and can be employed for a large scale problem with a cheap computational cost. The classical finite element discretization is adopted both for fluid and solid domains on tetrahedral elements. The monolithic scheme is used for the strong coupling of fluid and structure to satisfy kinematic and dynamic equilibrium conditions at the interface. The Navier-Stokes equations of an incompressible flow are solved by using the integrated method based on the Arbitrary Lagrangian-Eulerian (ALE) formula for the moving grid, and the total Lagrangian formulation is used for the non-linear hyper-elastic material of the vessel wall with the Mooney-Rivlin material model adopted as a constitutive equation for the solid domain. The numerical solutions for the FSI of blood vessel problem are quite similar to the experimental data. After validation the code, two problems of the blood vessel walls are considered: The carotid bifurcation and the aortic valve problems. The simulation results can be used for predicting the risk of cardiovascular diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []