A Circuit-Theoretic Approach to State Estimation

2020 
Traditional state estimation (SE) methods that are based on nonlinear minimization of the sum of localized measurement error functionals are known to suffer from non-convergence and large residual errors. In this paper we propose an equivalent circuit formulation (ECF)-based SE approach that inherently considers the complete network topology and associated physical constraints. We analyze the mathematical differences between the two approaches and show that our approach produces a linear state-estimator that is mathematically a quadratic programming (QP) problem with closed-form solution. Furthermore, this formulation imposes additional topology-based constraints that provably shrink the feasible region and promote convergence to a more physically meaningful solution. From a probabilistic viewpoint, we show that our method applies prior knowledge into the estimate, thus converging to a more physics-based estimate than the traditional observation-driven maximum likelihood estimator (MLE). Importantly, incorporation of the entire system topology and underlying physics, while being linear, makes ECF-based SE advantageous for large-scale systems.
    • Correction
    • Source
    • Cite
    • Save
    14
    References
    4
    Citations
    NaN
    KQI
    []