Investigating the long-term stability of protein immunogen(s) for whole recombinant yeast-based vaccines

2018 
Even today vaccine(s) remains a mainstay in combating infectious diseases. Many yeast-based vaccines are currently in different phases of clinical trials. Despite the encouraging results of whole recombinant yeast and yeast display, the systematic study assessing the long-term stability of protein antigen(s) in yeast cells is still missing. Therefore, in the present study, I investigate the stability of heterologous protein antigen in the cellular environment of Saccharomyces cerevisiae through Escherichia coli surface protein (major curlin or CsgA). Present biochemical data showed that the stationary-phase yeast cells were able to keep the antigen stable for almost 1 year when stored at 2°C–8°C and 23°C–25°C. Further, iTRAQ-based quantitative proteomics of yeast whole cell lysate showed that the level of heterologous fusion protein was low in cells stored at 23°C–25°C compared to those at 2°C–8°C. In the end, I also proposed a workable strategy to test the integrity or completeness of heterologous protein in the yeast cell. I believe that the observations made in the present study will be really encouraging for those interested in the development of a whole recombinant yeast-based vaccine(s).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    9
    Citations
    NaN
    KQI
    []