Explaining Excess Dipole in NVSS Data Using Superhorizon Perturbation.

2021 
Many observations in recent times have shown evidence against the standard assumption of isotropy in the Big Bang model. Introducing a superhorizon scalar metric perturbation has been able to explain some of these anomalies. In this work, we probe the net velocity arising due to the perturbation, which does not cancel out for large scale structure, unlike in the case of CMB. Thus, within this model's framework, our velocity with respect to the CMB is different from the velocity with respect to the large scale structure. Taking this extra velocity component into account, we study the superhorizon mode's implications for the excess dipole observed in the NRAO VLA Sky Survey (NVSS). We find that the mode can consistently explain both the CMB and NVSS observations. We also find that the model is consistent with the observed Hubble constant dipole and the Hubble bulk flow velocity. The model leads to several predictions which can be tested in future surveys. In particular, it implies that the observed dipole in large scale structure should be redshift dependent and should show an increase in amplitude with redshift. We also find that the Hubble parameter should show a dipole anisotropy whose amplitude must increase with redshift in the CMB frame. Similar anisotropic behaviour is expected for the observed redshift as a function of the luminosity distance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    1
    Citations
    NaN
    KQI
    []