New scanning tunneling microscopy technique enables systematic study of the unique electronic transition from graphite to graphene

2012 
Abstract A series of measurements using a novel technique called electrostatic-manipulation scanning tunneling microscopy were performed on a highly-oriented pyrolytic graphite (HOPG) surface. The electrostatic interaction between the STM tip and the sample can be tuned to produce both reversible and irreversible large-scale vertical movement of the HOPG surface. Under this influence, atomic-resolution STM images reveal that a continuous electronic reconstruction transition from a triangular symmetry, where only alternate atoms are imaged, to a honeycomb structure can be systematically controlled. First-principles calculations reveal that this transition can be related to vertical displacements of the top layer of graphite relative to the bulk. Detailed analysis of the band structure predicts that a transition from parabolic to linear bands occurs after a 0.09 nm displacement of the top layer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    12
    Citations
    NaN
    KQI
    []